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Metabolic trait diversity shapes marine 
biogeography

Curtis Deutsch1,2 ✉, Justin L. Penn1 & Brad Seibel3

Climate and physiology shape biogeography, yet the range limits of species can rarely 
be ascribed to the quantitative traits of organisms1–3. Here we evaluate whether the 
geographical range boundaries of species coincide with ecophysiological limits to 
acquisition of aerobic energy4 for a global cross-section of the biodiversity of marine 
animals. We observe a tight correlation between the metabolic rate and the efficacy  
of oxygen supply, and between the temperature sensitivities of these traits, which 
suggests that marine animals are under strong selection for the tolerance of low O2 
(hypoxia)5. The breadth of the resulting physiological tolerances of marine animals 
predicts a variety of geographical niches—from the tropics to high latitudes and from 
shallow to deep water—which better align with species distributions than do models 
based on either temperature or oxygen alone. For all studied species, thermal and 
hypoxic limits are substantially reduced by the energetic demands of ecological 
activity, a trait that varies similarly among marine and terrestrial taxa. Active 
temperature-dependent hypoxia thus links the biogeography of diverse marine species 
to fundamental energetic requirements that are shared across the animal kingdom.

The provisioning of energy to organisms in their natural environment 
is a key determinant of fitness. The energetic demands of ectothermic 
organisms increase with temperature and activity, and must be met by 
an adequate supply of oxygen (O2) and food. At a minimum, physiologi-
cal survival requires that the supply of energy matches the maintenance 
costs of an organism in a resting state; these energy demands vary by 
body size, temperature and species6,7. Additional energetic costs are 
incurred by the growth and activity required for ecological survival, 
which depend on lifestyle and ecological niche and typically increase 
energy expenditure several-fold above resting rates8,9.

Energy provision can be limited by O2 if its availability falls short of the 
metabolic demands of the organism, inducing a hypoxic condition10–12. 
This is more common in aquatic environments due to the slower diffu-
sion of O2 in water than in air13. The effects of an acute reduction in O2 
on population fitness can induce considerable die-offs14,15; however, the 
presence of metabolic barriers in habitats under stable conditions are 
difficult to observe. Recent analyses suggest that the current latitude 
and depth limits of several marine ectothermic species coincide with 
an O2 pressure that is just adequate to fuel the energy demand for physi-
ological maintenance and sustained ecological activity4,16,17. Here we 
evaluate the metabolic causes and biogeographical consequences of 
the constraints to aerobic energy by combining a mathematical model 
of temperature-dependent hypoxia with laboratory and field data from 
the broadest-available diversity of marine animal species.

Temperature-dependent O2 tolerance
The aerobic energy balance of an organism can be represented by 
a Metabolic Index4 (Φ), which is defined as the ratio of O2 supply to  
resting demand (Fig. 1a and Methods):
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where αD is the resting metabolic rate per unit body mass (B) at a 
reference temperature (Tref), and αS is the efficacy of O2 supply per 
unit body mass and the O2 pressure p( )O2

 of the ambient medium 
(units are described in Fig. 1 and the Methods). The ratio of αD/αS 
defines a first key physiological trait of an organism: its resting vul-
nerability to hypoxia at the reference temperature, Vh = αD/αS, which 
is measurable as the lowest O2 pressure (Pcrit) that can sustain resting 
metabolic demand (Φ = 1) (Fig. 1a). The inverse of hypoxia vulnerability 
is hypoxia tolerance, which is denoted Ao = 1/Vh, as defined previously4.  
A second key trait, Eo, is the sensitivity of hypoxia vulnerability to 
temperature (T), which is described by the exponential Arrhenius 
function (Fig. 1a) (Boltzmann constant, kB) and is equal to the differ-
ence between the temperature variation in the metaboli4c rate (Ed) 
and the O2 supply (Es), such that Eo = Ed − Es (Methods). The exponent 
ε is the allometric scaling of the supply-to-demand ratio, which is 
typically near zero18.

A third component of the energetic balance of an organism is the 
O2 needed to fuel growth and essential ecological activities. In ter-
restrial animals, sustained metabolic rates range from 1.5 to 7 times 
those at rest, a ratio termed the sustained metabolic scope (SMS)8,9. 
For aquatic aerobic organisms, such levels of activity would increase 
the resting vulnerability to hypoxia from Vh to a higher value, Vh × SMS, 
which requires that the minimum Φ of a given species in its environment 
increases above its resting minimum (which is set to 1, see above) by 
the same factor, denoted Φcrit. The ratio SMS will depend on the ecol-
ogy and life history of each species. This ecological trait is not directly 
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measured in marine species, but it can be estimated from the maximum 
metabolic rates, while Φcrit can be inferred as the lowest value of Φ that 
bounds the geographical distribution of a species4. If values of Φcrit 
match those of SMS, this strongly indicates that there is an energetic 
limit on marine species habitats.

To characterize the variation in these traits across diverse marine ani-
mal species, we analysed published physiological rates and thresholds 
(Methods), and the global geographical distributions of the species 
(OBIS; https://obis.org/). The dataset of 199 species includes 145 species 
with temperature-dependent metabolic rates and associated param-
eters (Ed and αD; hereafter called ‘metabolic traits’) (Extended Data 
Fig. 1a) and 72 species with temperature-dependent hypoxia thresholds 
and corresponding parameters (Eo and Vh; hereafter called ‘hypoxic 
traits’) (Extended Data Fig. 1b and Supplementary Table 1). The spe-
cies span more than eight orders of magnitude in body size, inhabit all 
ocean basins and biomes (Extended Data Fig. 1c), belong to five phyla 
(Annelida, Arthropoda, Chordata, Cnidaria and Mollusca) and broadly 
but incompletely sample the metabolic, geographical and taxonomic 
diversity of the ocean.

Physiological trait diversity
Resting metabolic rates normalized by temperature and body mass 
vary by orders of magnitude among all 145 species (Fig. 1b), but remain 
within the range found across the tree of life19. The critical O2 pressures 
also show a well-defined distribution of resting hypoxia vulnerability 
across species (Fig. 1b). Although metabolic rates are a direct driver 
of hypoxia vulnerability, the two traits are uncorrelated across spe-
cies, and αD exhibits greater interspecies variation than does Vh. These 
observations suggest that animals with a high metabolism also have a 
high efficacy of O2 delivery. Indeed, the absolute metabolic rates and 
coefficients of O2 supply are highly correlated among species (Fig. 1c 
and Extended Data Table 1), which indicates that there is a strong selec-
tive pressure for tolerance to low O2 , even for species that live outside 
relatively small ocean regions commonly termed hypoxic zones20.

The temperature sensitivity of metabolic rates within species exhibits 
substantial variation across species (Fig. 1d). The mean value, stand-
ard deviation and range of Ed (0.69 ± 0.36 eV, 0.1–2.0 eV) are similar to 
the thermal acceleration of the metabolic rates of organisms that are 
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Fig. 1 | Relationships among species traits that govern the temperature- 
dependent vulnerability to hypoxia of marine animals. a, Curves of 
constant  Metabolic Index (Φ) trace the pO2

 required to satisfy the O2 demand of 
species for resting (blue) or active (red) metabolic rates. b–e, The resting curve of 
each species is defined by a hypoxia vulnerability (Vh) and its temperature 
sensitivity (Eo), each of which reflect separate traits for O2 supply and demand  
(b, d) and their covariation (c, e). Active curves, which are increased from the 
resting curve by sustained activity (SMS), require a correspondingly higher Φ 
(Φcrit) (Fig. 4). The intersection of Φ curves with atmospheric pO2

 define the upper 
thermal limits of aerobic metabolism (ATmax) (Fig. 5). b, c, Hypoxia vulnerability 
(Vh; atm) and O2 demand at rest (b; αD; μmol O2 h−1 g−3/4, log10 scale) vary widely 
among species but are uncorrelated because the metabolic rate and the efficacy 
of the O2 supply (c; αS; μmol O2 h−1 g−3/4 atm−1) are strongly correlated (Extended 
Data Table 1). d, The temperature dependence of the hypoxia vulnerability (Eo; eV) 

is shifted to lower values than that of resting metabolic rate (Ed; eV) because  
the O2 supply accelerates with temperature (that is, Es = Ed − Eo > 0), partially 
compensating the thermal rise in metabolic demand. e, The relationship between 
Eo and Ed (dotted line; slope < 1) (Extended Data Table 1) suggests that species with 
a stronger metabolic response to temperature also exhibit stronger 
compensatory O2 supply mechanisms (Extended Data Fig. 2b). Values of Es are 
within the range predicted for diffusion (yellow shading) and empirically 
estimated from rates of the ventilation and circulation of animals in cool waters 
(blue shading; 0.55 ± 0.15 eV (mean ± s.d.) and warm waters (red shading; 
0.04 ± 0.18 eV (mean ± s.d.)) (Extended Data Fig. 3). c, e, Data (points and error 
bars, or centred dot, if the error bars are shorter than marker) are mean ± s.e.m. for 
species with n > 2 temperature values. See Supplementary Table 1 for the number 
of independent experiments for each species, and Extended Data Table 1 for 
statistics on the two-sided t-tests of the trait correlations.

https://obis.org/
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observed across the tree of life21. The temperature sensitivity of hypoxia 
vulnerability also varies widely across species (Fig. 1d), but Eo has a 
smaller mean, standard deviation and range (0.4 ± 0.28, −0.2–1.3 eV) 
that includes negative values. The differences in Eo relative to Ed reflect 
the effect of temperature on O2 supply (ES), the positive mean value 
(0.29 ± 0.23 eV) of which suggests that the supply of O2 also acceler-
ates with temperature22. The temperature effect on the supply of O2 
therefore counteracts, and for species with Eo < 0, even exceeds the 
thermal increase in metabolic rates.

To confirm the role of the O2 supply in moderating the temperature 
sensitivity of the vulnerability to hypoxia, we estimated the thermal 
response of three processes that transport O2 from ambient fluid to 
body tissue: the ventilation of water past the organism, the diffusion 
of O2 through the boundary layer at the water–body interface and the 
internal transport of O2 by animals that have circulatory systems. Dif-
fusive O2 fluxes increase with temperature in proportion to gas diffusiv-
ity (κ) and increase inversely to the decrease in kinematic viscosity (υ). 
The ratio of gas diffusivity to kinematic viscosity—the Schmidt num-
ber (Sc = υ/κ)—predicts a diffusive O2 flux23 for which the temperature 
dependence, Es, lies between 0.21 and 0.42 eV (Extended Data Fig. 3a). 
This range encompasses the mean value of Es that was inferred from all 
species for which Eo and Ed can both be estimated (Fig. 1e), but cannot 
account for its full interspecies range.

The ventilation of O2 to and circulation in the body may also modify 
the temperature sensitivity of hypoxia tolerance24–27 (Extended Data 
Fig. 3b). Both ventilation and circulation rates increase with temper-
ature in cooler waters (Es = 0.55 ± 0.15 eV (mean ± s.d.)) (Fig. 1e and 
Extended Data Fig. 3c), but the response decreases or even reverses 
in warmer conditions (Es = 0.04 ± 0.18 eV (mean ± s.d.)) (Fig. 1e and 
Extended Data Fig. 3c). These thermal responses of the O2 supply com-
bined with those of metabolic demand (Ed) can account for nearly the 
entire range of the temperature-dependence of hypoxia vulnerability 
(Eo). Moreover, the stronger thermal response of the ventilation and 
circulation rates in cool compared with warm waters is consistent 
with the weaker temperature sensitivity of species vulnerability to 
hypoxia (lower Eo) that is observed under cold relative to warm con-
ditions (Extended Data Fig. 3d). Thus, both biological and physical 
responses of the O2 supply to temperature reduce the temperature 
sensitivity of hypoxia vulnerability, relative to that of the metabolic 
demand alone. The compensation of faster metabolic rates at higher 
temperatures by a more rapid O2 supply indicates that there is a strong 
selective pressure for oxygen supply to meet demand across the range 
of inhabited temperatures.

Linking physiology to biogeography
The variation in temperature-dependent hypoxia traits suggests that 
species experience distinct geographical patterns of hypoxia risk 
(Fig. 2). In the upper ocean, both temperature and pO2

 decrease with 
depth, but often have opposing gradients with latitude; temperature 
decreases as subsurface pO2

 increases away from the Equator. The 
resulting spatial variation in Φ depends on the strength of these gra-
dients, and on the temperature sensitivity parameter, Eo. For species 
with strongly positive values of Eo, Φ decreases towards the warm low-O2 
waters of the shallow tropics (Fig. 2a). However, positive Eo also weak-
ens any vertical decrease in Φ, because the decline in ambient O2 is 
compensated by a slower metabolic rate, which extends the potential 
habitat of species into deeper waters. By contrast, for species with 
Eo < 0, the highest Φ is found in tropical waters, but declines rapidly 
with depth below the surface due to both lower O2 levels and cooler 
temperatures (Fig. 2c). The diversity in temperature-dependent 
hypoxia traits suggests that species that are limited by low Φ conditions 
may occupy distinct ocean habitats with global coverage, from shallow 
tropical waters to high-latitude and deep water, with a continuum of 
patterns in between (Fig. 2b).

To test whether the range of the predicted geographical habitat 
niches corresponds to the actual distributions of marine species, we 
extracted global occurrence data14 for all species in the physiologi-
cal database. For the 72 species with Metabolic Index parameters  
(Eo, Vh), distribution data were available for most species (n = 68), and 
the sampling resolution of many species was sufficient to reveal clear 
range boundaries in depth and latitude (Fig. 2 and Extended Data  
Figs. 4, 5). These data include three species that have similar Vh but span 
the full range of Eo, from strongly positive (Eo = 0.9, northern shrimp) 
to slightly negative (Eo = −0.2, sea squirt) and an intermediate value 
(Eo = 0.2, small-spotted catshark), which predict the distinct aerobic 
habitat distributions of these species (Fig. 2). In all three species, range 
boundaries in latitude and in depth are closely aligned with a single 
value of Φ above which the populations are widely distributed and 
below which reported occurrences are rare and isolated. Geographical 
range boundaries across a range of depths, latitudes and longitudes 
also coincided with single isopleths of Φ in other well-mapped species 
(Extended Data Fig. 4), including species that span multiple ocean 
basins or different sides of the same basin (Extended Data Fig. 5).

The boundaries of the geographical ranges of species are more 
strongly aligned with the Metabolic Index than with either temperature 
or pO2

 alone (Fig. 2 and Extended Data Figs. 4–7). This can be observed 
geographically: in vertical cross-sections, range boundaries follow a 
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Fig. 2 | Spatial distributions of the Metabolic Index and species with 
distinct temperature sensitivities. a, Northern shrimp (Pandalus borealis) 
from the north Atlantic, Pacific and Arctic Oceans. b, Small-spotted catshark 
(Scyliorhinus canicula) from the eastern Atlantic Ocean and Mediterranean 
Sea. c, Sea squirt (S. plicata), a cosmopolitan tunicate. The Metabolic Index is 
computed from monthly climatological measurements using the traits of each 
species, and averaged annually and over its longitudinal range in OBIS  
(http://iobis.org) for mapping (northern shrimp, 180°–45° E; catshark, 

20° W–15° E; sea squirt, all longitudes). The species have similar hypoxia 
vulnerability (Vh, around 0.10–0.16 atm), but their temperature sensitivities 
(Eo) vary widely (northern shrimp, Eo ≈ 0.9; catshark, Eo ≈ 0.2; sea squirt, 
Eo ≈ −0.2) yielding different Φ gradients across latitude and depth. A single 
lower limit of Φ bounding each species range is contoured (Φcrit; black lines), 
along with climatological isotherms (grey lines, in °C) and observed species 
occurrences (blue dots) (Methods).

http://iobis.org
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constant Φ value, but tend to cross multiple isotherms (Fig. 2 and 
Extended Data Figs. 4, 6). In mid-latitude species, range boundaries 
lean equatorward at shallower depths, opposite to the poleward tilt of 
isotherms (Fig. 2a, b and Extended Data Fig. 4a–e). At the surface, range 
limits can be reached as Φ declines towards the Equator, even without 
a gradient in pO2

 (Extended Data Figs. 4a–e, 6a, c).
The alignment of range boundaries with Φ is most easily observed, 

however, by projecting the biogeography of species onto the tem-
perature and pO2

 state–space that they inhabit (Fig. 3). Across species 
from distinct phyla and multiple ocean basins, including those with 
sparse spatial sampling, the state-space habitat map reveals strong 
correlations between the temperatures and pO2

 levels that bound the 
occurrences of species. These relationships are consistent with the 
expectations based on the Metabolic Index of each species, with oppo-
site slopes for species with positive and negative Eo values, but are 
incongruent with habitat limitation by either a single temperature or 
pO2

 level. The predictive ability of Φ to discriminate between inhabited 
and uninhabited ocean regions is better than that of temperature for 
92% of species, better than pO2

 for 67% of species, and better than  
both temperature and pO2

 for 62% of species (Methods and Extended 
Data Fig. 7).

That the species habitat boundaries coincide with a lower Φ value 
suggests that an aerobic barrier limits the geographical ranges of 
marine animals (Figs. 2, 3). We determined the range-bounding value, 
Φcrit, for all of the species with hypoxia traits and georeferenced location 
data, using two independent methods that yield convergent results 
(Methods and Extended Data Fig. 8a, b). The average of Φcrit is approxi-
mately 3.3 (interdecile range, 1.3–6.5) (Fig. 4). For all species, waters 
with lower Φ values exist within their inhabited depth range, but lack 
confirmed sightings (Extended Data Fig. 8c).

If Φcrit is the operative habitat barrier for marine species, its values 
should correspond to their sustained metabolic rates relative to rest. 
Long-term energetic demand is not directly measured for marine organ-
isms, but short-term experimental estimates of maximum-to-resting 
rate ratios (MMR/RMR) provide an empirical upper bound on SMS 
(Methods). We find a strong correlation between biogeographically 
inferred Φcrit and laboratory measured MMR/RMR values (Extended 
Data Fig. 9 and Extended Data Table 1), which suggests that SMS lies 
approximately midway between the resting and maximum rates 
(that is, SMS = wR + (1 − wR)(MMR/RMR); (see Methods, equation 7); 
wR = 0.4 ± 0.17 (mean ± s.d.), n = 14) (Extended Data Fig. 9), consistent 
with independent estimates of SMS from carbon isotopes in the otoliths 
of Atlantic cod28. Applied to the broadest compilation of MMR/RMR 

ratios, this scaling yields an interspecies distribution of SMS (n = 106) 
(Fig. 4a) that is statistically indistinguishable from that of Φcrit (Fig. 4a, 
Extended Data Table 1). The Φcrit values of the few sessile species that 
we analysed (Styela plicata, Lophelia pertusa and Crassostrea gigas) 
were among the lowest (Fig. 3c and Supplementary Table 1), which is 
consistent with their less-active lifestyles. Together, these observa-
tions provide strong evidence that Φcrit corresponds to SMS, and thus 
represents an energetic barrier to the geographical ranges of species.

The interpretation of Φcrit as the ratio of sustained active-to-resting 
metabolic rates can be further evaluated by comparing its frequency 
distribution across marine species to the SMS data that were directly 
and independently measured for terrestrial taxa4,8, including mam-
mals, birds and reptiles (Fig. 4b). The available data reveal no signifi-
cant differences between the distribution of marine Φcrit and marine 
and terrestrial SMS distributions (Fig. 4, Extended Data Table 1), 
which supports the suggestion that Φcrit is an operative limit on the 
geographical ranges of marine species. These results also suggest 
that the ratios of active-to-resting metabolic rates are a fundamental 
trait that represents ecological and life-history variation across the 
animal kingdom.

The SMS of marine taxa has important implications for empirical 
metrics of thermal tolerance that are widely used to infer the climate 
sensitivity of marine species. By elevating O2 demand, ecological and 
life-history activity increases the vulnerability to hypoxia from a rest-
ing threshold (Vh), to an active one, Vh × Φcrit, that is a key operative 
constraint on marine geographical ranges. Similarly, because hypoxia 
tolerance decreases with temperature for most species, ecological 
activity also reduces the maximum temperature at which aerobic 
metabolism can be sustained. Maximum temperatures for aerobic 
metabolism can be derived from the Metabolic Index (Fig. 1a) as the 
temperature at which Pcrit reaches the atmospheric O2 pressure (Patm) 
applied in experimental determinations of thermal tolerance29 (Meth-
ods). The distribution of this aerobic thermal limit, denoted ATmax, 
evaluated in a resting state (Φ = 1, ATmax

rest ) is highly variable among spe-
cies (Fig. 5a), owing to the diversity of hypoxia traits (Eo and Vh). For all 
species, ATmax

rest  is considerably higher than the temperatures that are 
encountered by the organisms in their natural habitats30,31, and for 
most species it is higher than temperatures found in the ocean (Fig. 5a). 
Similar findings have been reported based on observed critical thermal 
maxima, termed CTmax, measured by the loss of physiological perfor-
mance in a resting state32. Indeed, the frequency distributions of ATmax

rest  
and CTmax are remarkably similar (Fig. 5a and Extended Data Fig. 4a–d). 
In four of the seven species for which both thermal tolerance metrics 
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pO
 state-space habitat for three marine species 

from different phyla, ocean basins and latitude ranges. a, Summer flounder 
(Paralichthys dentatus), a fish from the subtropical eastern Atlantic Ocean.  
b, Nautilus (Nautilus pompilius), a mollusc from the tropical Indo-Pacific 
Ocean. c, Sea squirt (S. plicata), a cosmopolitan tunicate. The frequency of 
reported occurrences of each species (log10-transformed values) at each 
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 level (atm) is coloured. Water conditions with no 
reported occurrences of the species are white, and localities with no modern 
ocean volume are shaded grey. Measured critical pO2

 levels (Pcrit; black dots) 

indicate the measured threshold for maintaining the resting metabolic rate in 
laboratory experiments (Supplementary Table 1) and are fitted to the 
Metabolic Index (equation (1) when Φ = 1 (bottom dashed lines). The 
boundaries of inhabited ocean conditions follow a Metabolic Index curve, 
which is elevated above the Pcrit curve by a factor Φcrit (top dashed lines) that 
represents the ratio of the active-to-resting metabolic rate. Contrary to 
observations, a species for which the range is limited by temperature or pO2

 
alone would have a state-space occupancy delineated by a vertical or 
horizontal line, respectively.
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are known, ATmax
rest  occurs at a temperature at or below CTmax (Extended 

Data Fig. 10). This correspondence may reflect an aerobic basis for 
thermal tolerance29, although the link remains controversial25–36. What-
ever the underlying physiological basis for this similarity, both meas-
ures suggest that although there is a large ‘thermal safety margin’ in 
the face of climate warming37,38, these are derived from, and applicable 
to, only a state of rest.

Under the ecologically relevant energetic demand (Φ = Φcrit), the 
active aerobic thermal maximum, ATmax

act , falls well below ATmax
rest (Fig. 5b). 

Indeed, calculated values of ATmax
act  closely correspond to the maximum 

occupied environmental temperatures of individual species (Extended 
Data Fig. 10). Across species, the distribution of ATmax

act  tracks the global 
volumetric frequency of ocean temperatures. Thus, species with sub-
stantial apparent thermal safety margins at rest are in fact likely to be 
at the limit of their active thermal tolerance in the ocean39 and will 
experience habitat compression even at modest levels of warming and 
without any depletion of O2.

Implications
The energetic balance of organisms is a powerful framework for explain-
ing biogeographical patterns from temperature-dependent hypoxic tol-
erances and constituent metabolic rates that have been well studied for 
decades4–6. Geographical range limits imposed by aerobic energy con-
straints apply to a greater diversity of ocean species, physiologies and 
habitats than previously investigated4,16, from tropical to high-latitude 
waters and from shallow to deep ocean niches. Our results thus extend 
and strengthen the hypothesis that temperature-dependent hypoxia 
has a major role in biogeography, by mediating how ocean tempera-
ture and O2 are experienced by organisms with diverse environmental 
tolerances and geographical niches. The global applicability of such 

constraints support their use to predict patterns of extinction caused 
by climate change in the geological record40 and in the future.

Sustained activity levels and the metabolic traits—the resting meta-
bolic rate and its temperature sensitivity—that underlie aerobic energy 
barriers are not substantially different from the values observed in 
terrestrial biota. However, the hypoxia traits that shape those ener-
getic barriers—resting hypoxia vulnerability and its temperature 
sensitivity—cannot be derived from metabolic traits alone because 
of the strong compensation by O2 supply mechanisms. Species with 
fast metabolisms exhibit rapid O2 supply rates (Fig. 1c and Extended  
Data Fig. 2), while those with high metabolic temperature sensitivities 
show strong thermal responses of O2 extraction (Fig. 1e and Extended 
Data Fig. 2). The constituent traits of active hypoxia vulnerability are 
also correlated: species with a lower resting hypoxia vulnerability 
have a higher active to resting metabolic rate ratio (Extended Data 
Fig. 2). These correlations act to narrow the interspecies ranges of 
all three key traits (Extended Data Fig. 2) and suggest that there are 
strong physiological trade-offs and selective pressures, the nature 
and causality of which remain unresolved. Whatever their mechanistic 
origins, these trade-offs and constraints have resulted in a breadth 
of temperature-dependent hypoxia tolerance and associated spatial 
habitat limits that allow species to collectively exploit the full range of 
aerobic conditions found in the modern ocean.
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and predicted from the Metabolic Index (ATmax). a, Histograms of the aerobic 
thermal maxima at rest (ATmax

rest; coloured bars) of species derived from 
measured hypoxia traits and critical thermal maxima (CTmax; green line), which 
were derived from loss of physiological function experiments. Grey lines 
depict the relative frequency of global upper ocean temperatures (solid, 
monthly depth-resolved upper 150 m; dotted, satellite-based daytime Sea 
Surface Temperature  (Methods), scaled to the peak number of species for 
visualization. b, Active ATmax based on the hypoxia traits and Φcrit of all species. 
Activity levels reduce thermal tolerance from values well above ocean 
temperatures (grey lines) for species at rest (a) to temperatures that limit 
species ranges (b). ATmax is the maximum aerobic temperature permitting 
atmospheric pO2

 to meet resting or active metabolic O2 demands, computed 
(see Methods) by solving for T in equation (1), with p P= atmO2

 and Φ = 1 (for 
resting ATmax

rest) or Φ = Φcrit (for active ATmax).
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edge of the geographical range of marine species (but see Fig. 3c).
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relative role of O2 supply and demand can be derived from standard 
respirometry data, but currently the number of sampled species 
comprises only a small fraction of the total marine biodiversity. They 
include few species without circulatory systems; species without a 
clear Pcrit (‘oxyconformers’); or species pairs with well-characterized 
predator–prey or other ecological relationships that may modulate the 
physiological response to climate change. A systematic and concerted 
effort to expand data on Metabolic Index parameters across a wider 
variety of marine biota, especially those with rich biogeographical data, 
and populations that may adapt hypoxia traits over regional scales 
or between generations, will be key to further evaluating the role of 
temperature-dependent hypoxia in shaping marine biogeography, 
ecological interactions and habitat loss in a warming climate.
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Methods

Derivation of the  Metabolic Index
The Metabolic Index is defined as per a previous study4 as the ratio of the 
rates of the O2 supply to and demand by an organism. In general, both 
rates are dependent on temperature (T) and body mass (B). Following 
standard metabolic scaling, the O2 demand can be written:
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where the rate coefficient (αD) has units of O2 per unit body mass per 
time (we use μmol O2 g−3/4 h−1). It is scaled by the exponential Arrhenius 
function of absolute temperature, which captures the temperature 
dependence often described by a Q10 factor42. When estimating param-
eters, the body mass is normalized to the median experimental body 
mass so that it is non-dimensional. Thus, when T = Tref, an organism of 
median body mass has a resting metabolic rate of D = αD.

The supply of O2 to the body may also scale with body size, temper-
ature and ambient O2 pressure p( )O2

, such that:

S α T B p= ˆ ( ) (3)
σ

S O2

The function α Tˆ ( )s  represents the efficacy of the O2 supply. It is a rate 
coefficient (in μmol  O2  g−3/4  h−1atm−1), but becomes an absolute 
mass-normalized rate (μmol O2 g−3/4 h−1) only when multiplied by the 
ambient O2 pressure (we use units of atm). The exponent, σ, for the 
allometric scaling of the O2 supply with body mass is typically very 
similar to that of O2 demand18, although the two may differ.

The temperature dependence of α Tˆ ( )s  may be complicated, as it 
reflects the combined effect of multiple steps in the O2 supply chain, 
including ventilation and circulation rates that are under biological 
control, as well as diffusive O2 flux across the water–body boundary. 
Because diffusive gas fluxes are governed by physical and chemical 
kinetics, their temperature dependence follows the known scaling of 
gas exchange across a diffusive boundary layer43. Standard gas exchange 
models are well approximated by an Arrhenius function (Extended 
Data Fig. 3a):
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where the scalar coefficient αS has the same units as the function α Tˆ ( )s , 
but is a constant that does not depend on temperature. The same equa-
tion can be applied to ventilation rates and circulation rates, although 
in contrast to diffusion, for biological rates a single Es value will not 
necessarily apply over the entire temperature range of a species 
(Extended Data Fig. 3b). Even so, equation (4) provides a flexible  
formula for biological fluxes that vary nonlinearly with temperature 
over a finite temperature range.

Inserting equations (2)–(4) into the definition of the Metabolic Index, 
we get:
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where

ε σ δ= − , (6a)
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The defining formula (equation (5)) is identical to equation (1) in the 
main text, and to the previously described formula given by ref. 4. It dif-
fers in form from that described previously4 because it is normalized to 
a reference temperature (Tref) such that when T = Tref (here specified at 
15 °C), the coefficient (αS/αD = 1/Vh, which is denoted Ao in the previous 
study4) is the inverse of Pcrit at that reference temperature. We have also 
chosen a more intuitive annotation for the allometric exponents (σ, 
for ‘supply’ and δ, for ‘demand’). The only substantial difference in this 
formulation is that the contributions of the O2 supply and demand to 
the temperature sensitivity of hypoxia tolerance (that is, Eo) are made 
explicit, rather than being accounted for implicitly (for example, see 
supplementary figure 2 of the previous study4). This allows the net 
temperature dependence of the tolerance of hypoxia to be partitioned 
into supply and demand effects using equations (6a)–(6c).

Data compilation and parameter estimation
The physiological parameters of the Metabolic Index (Φ) are derived 
from laboratory measurements of hypoxic thresholds (Pcrit) and resting 
metabolic rates (D) at multiple temperatures. The measurements are 
taken from published literature, adding to previous compilations7,40,44. 
The original studies and parameter values are listed in Supplementary 
Table 1, and yield 145 species with metabolic rate parameters, and 72 
species with hypoxia parameters (including four based on lethal thresh-
olds (LC50)). The species with Pcrit data range over 8 orders of magnitude 
in body mass, from 5 phyla (Annelida, Arthropoda, Chordata, Cnidaria 
and Mollusca), including 31 malacostracans, 26 fishes, 9 molluscs,  
2 copepods, and 1 species each for ascidians, thaliasceans, scleractinian 
corals and annelid worms.

Metabolic traits (δ, αD, Ed) are derived from fitting equation (2) with 
mass-normalized resting metabolic rates (μmol O2 h−1g−3/4) that have 
been experimentally determined at multiple temperatures. Hypoxia 
traits (ε, Vh and Eo) are derived by substituting paired experimental 
temperatures and Pcrit data (atm) in equation (5) (as variables T and 
pO2

), and solving for the parameters that give Φ = 1, the condition in 
which the physical O2 supply and resting metabolic demand are bal-
anced. Parameters describing the net O2 supply (αS and Es) were esti-
mated from equations (6a)–(6c), that is, αS = αD/Vh and Es = Ed − Eo, for 
the subset of species for which Pcrit and metabolic rates are both avail-
able at multiple temperatures. The temperature dependence of the 
net O2 supply is compared to independent estimates based on the 
individual steps in the O2 supply chain: diffusion, ventilation and  
circulation (Extended Data Fig. 3). With species for which body mass 
varied by less than a factor of 2, we set δ = 3/4 and ε = 0, values that 
typify most species, including those investigated here.

We analysed the parameters of the Metabolic Index in two comple-
mentary ways. First, we compare the interspecies frequency distri-
butions of each parameter, which emphasizes the diversity of traits 
and their relationships across marine biota, and enables comparisons 
between traits that are not all measured in all species. Second, we exam-
ine the intraspecies relationships between traits whenever multiple 
traits from the same species are available. Such analyses provide a 
more direct test of physiological mechanisms, but are taxonomically 
restricted and more sensitive to random errors in the experimental 
determination of parameters.

We use MATLAB’s nonlinear fitting routine (fitnlm.m) to solve for 
species traits (parameters) that minimize the squared residual errors. 
We report the central estimate of each parameter, the Pearson correla-
tion coefficient (r2) and the P value based on two-sided Student’s t-tests, 
and the number of raw observations in Supplementary Table 1. With 
species parameters obtained from equations (1), (2), (6), relationships 
between traits are subsequently analysed using a standard linear least 
squares MATLAB routine (regress.m). Regression parameters, their 95% 
confidence intervals, correlation coefficients (r2), the P value based on 
two-sided t-tests and the number of raw observations for each relation-
ship are reported in Extended Data Table 1.
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for which experiments were conducted at as few as 2 temperatures.  
However, all reported relationships among traits were confirmed using 
the subset of species (n = 14) for which regressions of metabolic rates 
and Pcrit data against temperature were statistically significant (P < 0.05, 
two-tailed t-test) (Extended Data Fig. 2).

Determination and validation of Φcrit

The limiting value of the Metabolic Index in each species habitat (Φcrit), 
was estimated by pairing species location data with hydrographic con-
ditions at those locations. Occurrence data were downloaded from 
the Ocean Biodiversity Information System (OBIS; http://iobis.org) in 
September 2019. Of the 72 species with hypoxia traits, OBIS contains 
georeferenced presence data for 68. To estimate the hydrographic 
conditions at each specimen location, we used monthly climatological 
temperature and O2 fields at a resolution of 1° latitude and longitude 
and at 33 depths from the World Ocean Atlas45,46. For analysis of tem-
perature at the sea surface (z = 0 m) (Fig. 5), we include the diurnal tem-
perature range from satellite remote sensing (data downloaded from  
https://www.ghrsst.org/ghrsst-data-services/products/) to estimate 
the globally resolved peak daytime surface temperatures.

Species occurrences were paired to hydrographic data by binning 
them to the World Ocean Atlas grid for every month based on the loca-
tions provided in OBIS. Hydrographic conditions were determined 
at the central depth of the minimum and maximum depths reported 
by OBIS, or from either depth alone if only one metric was provided. 
Occurrences were discarded if the range of conditions within that 
depth range differed from the central estimate by more than 2 °C for 
temperature or 20% for O2. For occurrences that did not have depth 
information altogether, we assigned a minimum depth at the sea sur-
face and maximum depth at the seafloor47. In cases in which even this 
maximum uncertainty in depths satisfied the error tolerance (2 °C 
for temperature and 20% for O2) the location data were retained. 
The Metabolic Index (that is, equation (5)) was computed based on 
species-specific traits and the paired hydrographic data for the occu-
pied sites of each species.

Of the more than 1.5 million OBIS occurrences used here, only 
0.1% mapped to climatological conditions in which Φ falls below 1.  
This environmental condition is physiologically unsustainable, yet 
may arise from transient species movements, or a mismatch between 
the climatological temperature and O2 fields used to compute Φ and 
the true in situ hydrographic conditions at the time occurrence data 
were recorded. Only three species in our dataset had more than 5% of 
OBIS occurrences for which Φ < 1, and two of them (Sergia tenuiremis 
and Sergia fulgens) are known to be vertical migrators. Because of 
the likelihood that these occurrences do not reflect viable long-term 
habitats, but instead are being used as a temporary refuge that requires 
metabolic suppression, we report the Φcrit values that do not include 
such locations. Of the three species with more than 5% of locations 
that had Φ < 1, the removal of those points affected the estimate 
Φcrit by <0.3 for two of them (S. fulgens and M. pammelas), and thus 
has a negligible effect on our results. We report the Φcrit estimates 
both with and without the inclusion of rare locations for which Φ < 1 
(Supplementary Table 1).

We evaluated the Φ value that best defines the boundary of the geo-
graphical range of each species in two independent methods, which use 
identical data but differ in the degree of data aggregation over space 
and time. The first equates Φcrit with the lower tail in the frequency 
distribution of Φ across all occupied sites in OBIS, for each species. 
The second computes the Φ value that maximizes its predictive skill 
in segregating inhabited and uninhabited grid cells globally, using a 
machine-learning technique. The two methods, which are described 
below, give highly consistent results (Extended Data Fig. 8a), but the 
first approach is presented in the main text (Fig. 4), owing to its con-
ceptual and computational simplicity.

Occurrence histogram. The ecological parameter, Φcrit, is estimated 
from the cumulative distribution function as the value of Φ above which 
the most of the occurrences of each species are found (5th and 10th 
percentiles). The two values yield similar Φcrit values, and their range 
encompasses the Φcrit derived from a machine-learning algorithm  
(see ‘The F1-score’; Extended Data Fig. 8a), but can be applied objectively 
to species for which the three-dimensional distribution is too complex 
or sparsely sampled to identify a clear boundary to the geographical 
range. We present the median of Φcrit in our primary results, but include 
both values in Supplementary Table 1.

As sampling density decreases, the lowest observed Φ value may 
not reflect the true minimum within a species habitat. However, we 
found that the distribution of Φcrit for all species was similar regardless 
of sampling intensity (Extended Data Fig. 8b), and not biased towards 
higher values of Φcrit (Fig. 4). We therefore did not restrict the analysis 
based on the number of occurrences.

The F1-score. We evaluated the ability of Φ to separate the ocean into 
inhabited and uninhabited portions for each species, using a standard 
statistical categorization metric, the F1-score48,49. The F1-score is com-
puted based on the presence and absence of a species on a regular grid 
(latitude, longitude, depth and month), for which the environmental 
conditions fall above and below a threshold value, which we varied. 
The value of the environmental threshold that yields the maximum 
F1-score is the one that best segregates global grid cells into inhabited 
and uninhabited conditions for the environmental parameter of inter-
est. Φcrit is estimated as the Φ value that optimizes the predictive skill 
of categorizing habitat (maximum F1-score).

The F1-score is calculated as the harmonic mean of precision and 
recall, with equal weighting given to both measures. Precision measures 
the probability that the presence of the species in waters for which 
Φ ≥ Φcrit is a true positive (TP; specimen reported in the space in which 
they are predicted to occur) rather than a false positive (FP; specimen 
reported in a space predicted to be below the Φ threshold). Recall is 
the probability that a specimen is actually reported where Φ > Φcrit  
(that is, how likely is a true positive relative to a false negative (FN); miss-
ing observations above Φcrit). In terms of these variables, the F1-score 
can be expressed as:

F =
recall + precision

2
=

2TP
2TP + FN + FP
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−1 −1
−1











This metric does not give weight to true absence data (species 
known to be not present), which are infrequently and inconsist-
ently reported in marine species data. It is thus well suited to cat-
egorization problems based on OBIS data. A model with perfect 
precision and recall would have F1 = 1. The absolute F1-score cannot 
be meaningfully compared between species, as it depends on the 
total number of grid cells included, as well as the total number of 
occupied sites. However, when applied to the same species and 
geographical region, the variations in F1-scores between different 
values of the same environmental parameter, or between different 
environmental parameters (for example, Φ versus T), are a meaning-
ful metric for the relative skill of a given parameter and its threshold 
value. Optimal F1-scores were used to compare the predictive skill 
of different environmental parameters.

Comparison to SMS. To determine whether Φcrit is consistent with 
independent estimates of the ratio of active-to-resting metabolic rates, 
we compared the frequency distributions of both metrics. An appro-
priate direct comparison of the habitat constraint (Φcrit) to metabolic 
rate ratios would be based on active metabolic rates sustained over 
the time scales of population maintenance (termed ‘SusMR’)8. Such 
rates are not measured in marine species. However, maximum rates 

http://iobis.org
https://www.ghrsst.org/ghrsst-data-services/products/


of metabolism are commonly measured in laboratory experiments. 
Long-term sustained metabolic rates can be expressed as a weighted 
average of the maximum rates (MMR) obtained under extreme exertion 
and the minimum rates that apply in a state of rest (RMR):

w wSusMR = × RMR + (1 − ) × MMRR R

where wR represents the effective weight of the resting state in the 
time–mean sustained metabolic rate. Dividing both sides by RMR, and 
noting the definition of SMS (SMS = SusMR/RMR), yields the equation 
in the main text:

w wSMS = + (1 − )(MMR/RMR), (8)R R

which can be rearranged, substituting the definition of factorial aerobic 
scope (FAS = MMR/RMR) to estimate the weighting factor, wR:

w =
FAS − SMS

FAS − 1
. (9)R

Carbon isotope analyses of the otoliths of Atlantic Cod22 suggest that 
SMS ≈ 2, whereas FAS50 ranges from 3.3 to 3.8, yielding a range of wR 
from 0.39 to 0.47. We estimated the weighting of resting metabolic 
rates (that is, wR) using the measured ratios of MMR/RMR and Φcrit for 
the species in our dataset (Supplementary Table 1), and find a mean 
and interspecies variation (s.d.) (wR = 0.40 ± 0.17, n = 14; Extended 
Data Fig. 9 and Supplementary Table 1) that is consistent with the 
direct geochemical estimate for cod. Extending the mean value 
from these 14 species to a broader group of species with measured 
FAS41 (n = 106) but no SMS or Φcrit, we find a distribution of SMS that 
is statistically indistinguishable from the overall distribution of Φcrit 
(Extended Data Table 1). Interspecies variation in the estimates of wR 
probably reflects both real biological differences in activity levels 
and the substantial methodological uncertainties that originate from 
both laboratory rates (MMR and RMR) and biogeographically derived 
Φcrit values. Regardless of the precise values of wR and their uncertain-
ties, the fact that they are all positive (FAS values are at or above Φcrit) 
and that Φcrit is significantly correlated with laboratory-derived SMS 
and MMR/RMR measurements (Extended Data Table 1 and Extended  
Data Fig. 9) indicates that aerobic energy availability is a habitat  
constraint.

Estimation of ATmax. The maximum temperature at which aerobic res-
piration can be sustained is estimated by extrapolating the empirical 
relationship between Pcrit and temperature to the mean atmospheric 
pO2

 (Patm), at which CTmax experiments are carried out. We thus find the 
solution to the equation:
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Because the Pcrit data are all below Patm, the solutions to this equation 
(ATmax) are necessarily extrapolated beyond the experimental range 
of temperatures over which Eo is estimated. If Eo was constant across 
the full range of temperatures, this extrapolation would only be influ-
enced by the random errors in Pcrit measurements, but would not incur 
a systematic bias across all species, yielding a histogram of ATmax with 
a robust mean value. However, the available data indicate that Eo 
increases systematically (albeit slightly) with temperature (Extended 
Data Fig. 3). We correct for this bias in the extrapolation of Pcrit curves 
to the aerobic thermal maximum, by including an empirically derived 
linear increase in Eo with temperature, as discussed next.

The slope of the relationship (denoted by the derivative of Eo with 
respect to temperature, dEo/dT) is estimated in multiple ways, to 
evaluate the uncertainty in these extrapolations. First, we use the 

intraspecies difference in Eo among species for which it can be sepa-
rately estimated both above and below Tref, as discussed in the main  
text and shown in Extended Data Fig. 3. This yields a mean intraspe-
cies dEo/dT = 0.036 eV/°C (0.55 eV/15 °C, where 15 °C is the differ-
ence between the two temperature bins 0–15 °C and 15–30 °C). 
Second, we consider the differences in Eo between colder waters 
(T < Tref) and warmer waters (T > Tref) for all species. This estimate,  
dEo/dT = 0.013 eV/°C (0.2 eV/15 °C; Extended Data Fig. 3) gives a lower 
value because it includes interspecies variation. Finally, as a third 
method for estimating the potential variation in Eo with temperature, 
we directly fit the Pcrit curves (equation (5) for all species with more than  
2 temperatures, including a linear relationship between Eo and tem-
perature. We discard any fits that predict a Pcrit that declines towards 
zero at high temperatures (T ≫ 30 °C), as this would imply an unrealistic 
(infinite) tolerance for hypoxia at high temperatures. As a second check 
on the curve fits, we compare the Akaike information criterion (AIC) 
for the model with a linear increase in Eo to our standard model with 
a constant Eo. We only retain those curve fits in which the AIC did not 
decrease, indicating that the additional parameter did not reduce the 
information content of the model despite the additional parameter. 
Across species, this yields a mean value of dEo/dT = 0.022 eV/°C, which 
falls in between the previous two values. We apply this interspecies 
mean value as a default value for all species (Fig. 5), since it yields results 
that are not biased relative to values derived from species-specific  
dEo/dT wherever both are available (Extended Data Fig. 10). The range 
of dEo/dT estimates is used to generate the error bars of the estimates 
of ATmax plotted in Extended Data Fig. 10.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data used in this study are described in the Methods. The data that 
support the findings of this study are available from the corresponding 
author upon reasonable request.

Code availability
The MATLAB code is available at GitHub (https://github.com/cadeutsch/
Metabolic-Index-Traits).
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Extended Data Fig. 1 | Species metabolic rates and hypoxia tolerances from 
laboratory studies. a, b, Measured metabolic rates (μmol g−1 h−1) (a) and  
critical O2 pressures (Pcrit) (b) versus temperature (°C) in published laboratory 
experiments (circles). For clarity, metabolic rates are shown only for the subset 
of species with Pcrit data. c, Location data from OBIS for all species with Pcrit 

measured at multiple temperatures, yielding calibrated Metabolic Index 
parameters. The number of species with occurrences in the Pacific, Atlantic and 
Indian Oceans are labelled. Maps of the occurrences of individual species are 
available at https://obis.org/.

https://obis.org/
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Extended Data Fig. 2 | Correlations and diversity in traits that govern 
geographical range boundaries. a–c, The key traits that make up resting 
hypoxia vulnerability (Vh = αD/αS) (a), its temperature sensitivity (Eo = Ed − Es) (b) 
and the elevated hypoxia vulnerability under activity (Vh × Φcrit) (c) all exhibit 
significant correlations (standard linear regression, two-tailed t-test, P < 0.05) 
between their constitutive parameters, regardless of whether we use all 72 
species (dashed lines) or the subset of 14 species (dotted lines) for which the 
traits themselves were derived from statistically significant fits to equations  
(1) and (2) (see Methods and Extended Data Table 1). As in Fig. 1, points and error 
bars (centred dot, if shorter than marker) are mean ± s.e.m. for species with more 
than two independent experimental temperatures. See Supplementary Table 1 
for the number of independent temperature experiments used for each species. 
The number of species used in each correlation is n = 48 (a, b) and n = 56 (c).  
See Extended Data Table 1 for statistics on two-sided t-tests of trait correlations.  
d–f, Observed diversity in resting hypoxia vulnerability (Vh) (d), its temperature 

sensitivity (Eo) (e) and active hypoxia vulnerability (Vh × Φcrit) (f), is measured as 
the interquartile range (IQR) among all species (red bars). We also quantified  
the diversity in species traits in the absence of observed correlations in the 
underlying metabolic traits. The correlations are removed by replacing species 
variation in the indicated parameter with the interspecies mean value.  
The diversity of the resulting trait is recomputed from the IQR (blue bars). 
Specifically, we replace the variable αS (a) with its mean value to derive a new 
distribution and IQR of Vh (d, blue bar); replace the variable Es (b) with its mean 
value to derive a new distribution and IQR of Eo (e, blue bar) and replace the 
variable Φcrit (c) with its mean value to derive a new distribution and IQR of the 
active hypoxia tolerance (Vh × Φcrit; f, blue bar). For all three central traits, the 
correlation and putative trade-offs among the underlying constitutive 
parameters act to reduce the interspecies diversity of the trait that governs 
habitat range limits.



Extended Data Fig. 3 | Temperature sensitivity of processes that govern the 
O2 supply. a, The rate of diffusive flux across the boundary layer increases with 
temperature in proportion to Scn, where the Schmidt number (Sc) is the ratio of 
seawater viscosity (υ) to O2 diffusivity (κ). Typical values of the exponent, n, are 
−1/2, −2/3 and −1, depending on the underlying model of boundary layer 
renewal23. In all cases, the empirically derived curves (solid) are well 
approximated by an Arrhenius function (dashed) with corresponding 
activation energy parameters (that is, Es) ranging from 0.21 eV (for n = −1/2; 
blue) to 0.27 eV (for n = −2/3; green) and 0.42 eV (for n = −1; red). b, Experimental 
measurements of rates of the ventilation (solid) and circulation (dashed) of 
animals. Rates at multiple temperatures are from published studies of six 
species, including three annelids24 (Nereis virens, blue; Nereis succinea, brown; 
and Nereis diversicolor, gold; all with n = 6 independent experiments) and three 
chordates (Lepornis macrochirus26, red; Oncorhynchus mykiss51, green; 

Leiopotherupon unicolor25, cyan; all with n = 7 independent experiments). c, For 
each species, the temperature sensitivity of each rate is determined by fitting 
to an Arrhenius function above and below 20 °C, the approximate thermal 
midpoint of all data. Histograms of activation energy in each temperature 
range (insets) are significantly different (two-sample Kolmogorov–Smirnov 
test; P = 5× 10−4) for warm conditions (Es = 0.04 ± 0.18 (mean ± s.d.)) and cool 
waters (Es = 0.55 ± 0.15 (mean ± s.d.)). d, Distributions of Eo computed from 
experimental data at temperatures at or above 15 °C (red bars) are higher than 
for the same parameter computed using only temperatures at or below 15 °C 
(blue bars). For species for which at least two Pcrit values were available both 
above and below Tref, the difference between Eo for warm and cold temperatures 
(green bars) is always greater than zero, and has a mean value (0.55 eV) similar 
to the change in temperature dependence of ventilation and circulation rates 
across cold and warm temperatures (green bars in c).
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Extended Data Fig. 4 | Spatial distributions of the Metabolic Index, 
temperature and pO2

 compared to occurrences of species that occupy 
diverse latitude and depth ranges. a–e, Species inhabit mid to high latitudes. 
f–h, Species are found in tropical waters. Fields of Φ (colours), temperature  
and O2 pressure are zonally averaged over the longitudinal range of each 
species. a, Cyclopterus lumpus (95 °W–35 °E). b, Tautogolabrus adspersus  
(50–80 °W). c, Gadus morhua (75 °W–40 °E). d, Zoarces viviparus (10 °W–30 °E). 
e, Gadus ogac (110 °W–40 °E). f, Penaeus aztecus (40–120 °W). g, Funchalia 
villosa (100 °W–40 °E). h, Gennadas valens (100 °W–47 °E). Observed species 
occurrences are plotted (blue dots). A single lower limit of Φ bounding each 
species range is contoured (Φcrit; black lines) alongside isotherms of 

temperature (white lines; °C) and isopleths of pO2
 (grey lines; atm). Published 

upper thermal limits (CTmax) are contoured in green where available, based on 
maximum monthly ocean temperatures (°C). Green asterisks denote species 
for which CTmax occurs above all mapped maximum monthly temperatures.  
For most species, Φcrit more skilfully categorizes occupied habitat than either 
upper temperature limits or lower pO2

 considered individually. This skill is 
shown by the ratio of F1-scores of Φ relative to temperature or to pO2

  
(in parentheses, respectively) from the full four-dimensional species 
distribution. For G. morhua, the monthly range of Φcrit is also mapped (dashed 
black lines). For G. ogac, mapped occurrences, Φ and water properties are from 
the Atlantic Ocean only. Land regions are shaded in grey.



Extended Data Fig. 5 | Maps of the Metabolic Index, temperature and pO2
 

compared to species distributions. a–f, Mapped variables are averaged  
from the surface to the 95th percentile depth of each species. a–c, P. borealis 
(0–450 m). d–f, Stenobrachius leucopsarus (0–225 m). A single lower limit of  
Φ (Φcrit; black lines) is consistent with habitat range limits found in the Pacific 
and Atlantic Oceans for P. borealis (a) and different sides of the Pacific Ocean 

for S. leucopsarus (d). By contrast, no single maximum temperature or 
minimum pO2

 is consistent with each species’ range limit across those regions. 
The increased skill of Φcrit is encapsulated by the higher F1-scores of Φ relative 
to temperature (b, e) or to pO2

 (c, f) (in parentheses, respectively) from the full 
four-dimensional species distribution. Occurrence data for each species are 
shown (blue dots).
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Extended Data Fig. 6 | Spatial distributions of the P. borealis, S. canicula 
and S. plicata compared with the Metabolic Index, temperature and pO2

.  
a–i, Spatial distributions of the species shown in Fig. 2 (P. borealis, S. canicula 
and S. plicata) were compared with the Metabolic Index (a, d, g), temperature 
(b, e, h) and pO2

 (c, f, i). a–c, P. borealis. d–f, S. canicula. g–i, S. plicata. A single 
lower limit of Φ bounding each species range is contoured (Φcrit; black lines). 

For all species, Φcrit more skilfully categorizes occupied habitat than either 
temperature limits or lower pO2

 considered individually. This skill is shown  
by the higher ratio of F1-scores of Φ relative to temperature or to pO2

  
(in parentheses, respectively) from the full four-dimensional species 
distribution. Occurrence data for each species are shown (blue dots).  
Regions for zonal averaging are as in Fig. 2.



Extended Data Fig. 7 | Predictive skill of the Metabolic Index in delineating 
the species geographical range, compared with temperature or ppOO22

 alone. 
The F1-score measures the ability of each environmental variable at a given 
threshold value to categorize the ocean into inhabited and uninhabited 
regions. The maximum F1-score for Φ is then compared with the maximum 
value for temperature or pO2

 thresholds and plotted on a log10 scale such that 
positive (negative) values indicate a stronger (weaker) predictive skill for Φ. 

Printed numbers (n) on the graph indicate the number of species that fall  
within each quadrant (for numbers in quadrants) or to each side of the axes  
(for numbers on axes). For example, Φ outperforms T in 44 species, and 
underperforms in only 4, and outperforms both T and pO2

 in 30 species.  
A maximum F1-score was found for 48 species, while 8 additional species  
had no clear maximum in F1-score.
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Extended Data Fig. 8 | Critical value of the Metabolic Index at the limit of 
species geographical range (Φcrit). a, The values of Φcrit are compared using 
two independent methods. The first ( y axis) is determined from the peak in the 
F1-score for categorization into occupied and unoccupied sites (see Methods). 
The second (x axis) is determined from the bottom percentile (5–10%)  

of Φ values inhabited by the species. b, The histogram of Φcrit is not sensitive to 
the number of occurrence observations. c, For all species, waters with  
lower Φ values than Φcrit exist within the depth range of these species, but lack 
confirmed specimens. The dashed line indicates the 1:1 line.



Extended Data Fig. 9 | Relationship between Φcrit and the ratio of 
maximum-to-resting metabolic rates (MMR/RMR), among all species with 
empirical estimates of both parameters. Blue dots, species with empirical 
estimates of both parameters (Supplementary Table 1). Lines of constant wR 
(see equation (9) are shown for a sustained metabolic rate that is equal to the 

resting rate (SMS = 1; wR = 1; blue line), the maximum metabolic rate (SMS = FAS; 
wR = 0; red line) or the mean apparent species value (wR = 0.4; green line) in 
which sustained the metabolic rate is approximately midway between minimal 
(resting) and maximal rates. Independent geochemical estimate of SMS based 
on carbon isotopes in the otoliths of Atlantic cod28 are shown as a triangle.
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Extended Data Fig. 10 | Relationship across species between thermal 
tolerance of species measured in laboratory studies and predicted from 
the Metabolic Index. Critical thermal maxima (CTmax), reported in previous 
studies, were measured at the onset of loss of physiological function in a 
resting state. The ATmax are predicted from the Metabolic Index, as the 
temperature at which the O2 threshold for metabolic rate in either resting  
state (Pcrit) or under sustained activity levels (Pcrit × Φcrit), reaches the mean 
atmospheric O2 pressure, Patm (see Methods, equation (10)). The extrapolation 

of Pcrit curves to the atmospheric pressure is based on n = 3 independent 
estimates of the linear increase in Eo with temperature (see Methods). Points for 
each species are the mean, and error bars show the range among the resulting 
n = 3 estimates of ATmax. Data are shown for all species in Fig. 5, for which all 
parameters are available (n = 7). For four out of seven species, the ATmax is 
reached before the CTmax, even in a resting state. For all seven species, the active 
ATmax is reached at a lower temperature than the CTmax, and is comparable to the 
maximum temperature that the species inhabits at atmospheric pressure.



Extended Data Table 1 | Summary statistical tests of the relationships between metabolic and hypoxia traits and between 
distributions of Φcrit and SMS

All correlations are determined by standard linear regression (computed using MATLAB’s function regress.m) and indicate statistically significant relationships (P < 0.05) between traits.  
All comparisons among histograms were evaluated by a two-sample Kolmogorov–Smirnov tests and indicate that significant differences in the underlying frequency distributions cannot be 
detected (P > 0.05) with the data.
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